Second Generation of Eurocode 8

prEN 1998-3:2022 Assessment and retrofit of timber buildings

Ivan Giongo University of Trento, Italy

22nd November 2023

THE NEW DRAFT OF EN1998-3

University of Minho School of Engineering

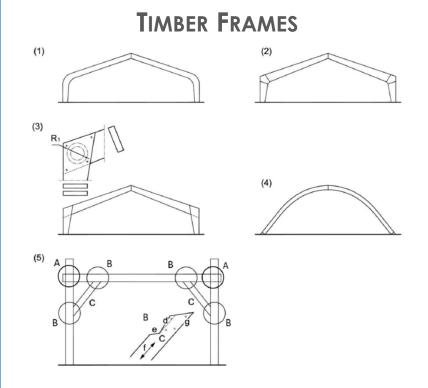
University of Decla Studi Technology

CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

10.1	Scope10	
10.2	Identification of geometry, details and materials10	
	General10	
10.2.2	Geometry10	6
10.2.3	Details	6
	Materials	
10.3	Classification of timber structural members10	9
10.3.1	Timber diaphragms	9
10.3.2	Timber frames	1
	Structural modelling	
	General	
10.4.2	Diaphragms	3
	Frames	
	Structural analysis	
	General	
	Local analysis of diaphragms with a force-based approach11	
10.6	Resistance models for assessment	7
	General	
	Timber diaphragms	
	Carpentry connections	
	Dowel-type fastener connections	
	Verification to limit states	
	Timber diaphragms	
	Timber frames	
	Carpentry connections	
	Dowel-type connections	
	Resistance models for retrofitting	
	Material design resistance	
	Diaphragms	
	Timber frames	
	Carpentry connections	
	Dowel-type connections	
10.0.5	Dower type connections	9

CARPENTRY CONNECTIONS

THE NEW DRAFT OF EN1998-3


CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

(a)

(c)

Figure 10.1 — Diaphragm typologies: a) single straight sheathed diaphragm with squared timber joists; b) floor with clay tiles over joists; c)/d) floor built with the so-called "malta-paglia" (mortar-straw) technique, beneath and above views

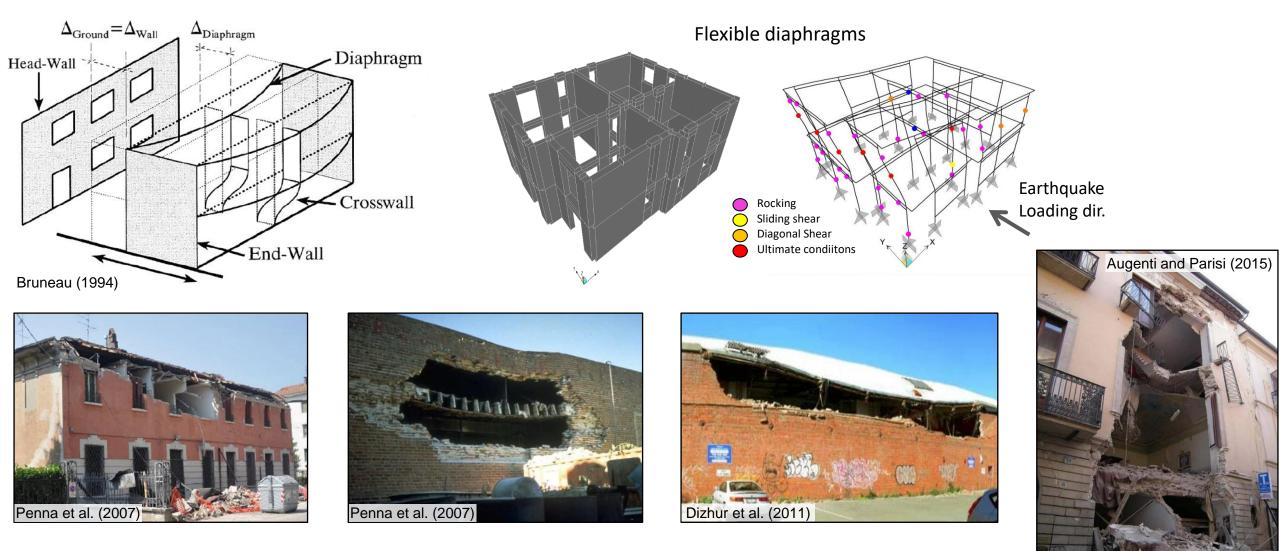
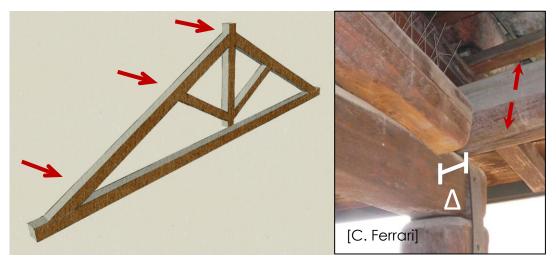
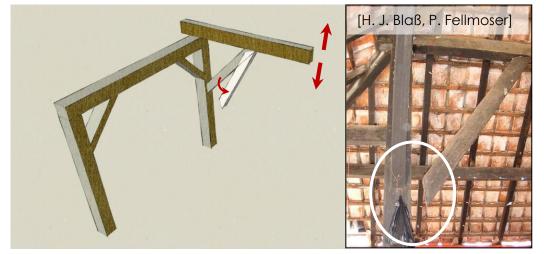


Figure 10.3— Timber frames addressed: 1) frames with relatively thin lamellas (glued), 2) finger joint (glued) connections, 3) dowelled connections, 4) arches, 5) traditional frames

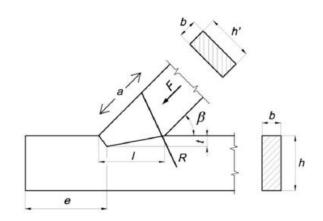
Figure 10.4 — Examples of carpentry connections: (a) Through pinned mortise and tenon (a') Blind pinned mortise and tenon (b) Notched joint between main rafters and tie-beam (b') A skewed tenon may be used to help in keeping all timber pieces co-planar (c) Halflap joint (c') Cogged half-lap joint (d) Halved scarf-joint (d') Scarf-joint with under-squinted ends

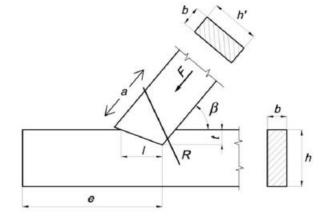
(d)





THE NEW DRAFT OF EN1998-3


ANNEX C | SUPPLEMENTARY INFORMATION FOR TIMBER STRUCTURES



Dislodging of a single-step joint (2012 Emilia earthquake)

Loss of contact surface in a single-step joint (2006 Yogyakarta earthquake)

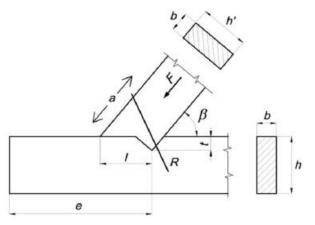


Figure C.1 — Example of reinforcement to be applied to the single-step connection

General rules

	$X_k \cdot \eta$	
$X_d = \varphi$	It's a parameter depending on the condition rating and the knowledge level	
Knowledge level	Condition assessment f	factor – φ
KLM1 – Minimum knowledge	Refer to D3 class φ-valu	Je
KLM2 – Average knowledge	Refer to the φ-valu degradation class im one obtained on the b	mediately worse than the
KLM3 - High knowledge		e corresponding to the tained on the basis of the

5.4.4 (1) a) **KLM1 (Minimum knowledge)** is attained when no direct information on the mechanical properties of the construction materials is available, either from original design specifications or from original test reports. Default values should be assumed in accordance with standards at the time of construction, accompanied by limited in-situ testing in the most critical members. In the case of masonry structures, direct testing may be avoided, and reference values of predefined masonry types may be attributed after an extended visual survey of masonry features (according to Table 5.1). In the case of **timber buildings** and **timber members**, direct testing may be avoided provided that an **accurate visual inspection** is performed according to **10.2.4.1**.

5.4.4 (1) b) KLM2 (Average knowledge) is attained when information on the mechanical properties of the construction materials is available either (i) from extended insitu testing; or (ii) from original design specifications complemented by limited in-situ testing. In the case of masonry structures, when original design documents are not available, direct testing may still be avoided, but, in addition to what is required for KLM1, the knowledge should be enhanced by extended non-destructive testing, as specified in Table 5.3 for inspections, which allows a more accurate classification of masonry types in the structure. In the case of pre-1940 timber buildings, when original design documents are not available, direct testing may be avoided, but, in addition to what is required for KLM1, the knowledge should be enhanced by non-destructive testing, as specified in Table 10.1.

General rules

	$X_k \cdot \eta$				
$X_d = \varphi$	It's a parameter depending on the condition rating and the knowledge level				
Knowledge level	Condition assessment factor – φ				
KLM1 – Minimum knowledge	Refer to D3 class φ-valu	Je			
KLM2 – Average knowledge	Refer to the φ-valu degradation class imm one obtained on the b	mediately worse than the			
KLM3 - High knowledge		e corresponding to the rained on the basis of the			

the mechanical properties of the construction design specifications or from original test rep accordance with standards at the time of c testing in the most critical members. In the case avoided, and reference values of predefined extended visual survey of masonry features provided that an accurate visual ins 10.2.4.1.

5.4.4 (1) c) KLM3 (High knowledge) is attained when information on the mechanical 5.4.4 (1) a) KLM1 (Minimum knowledge properties of the construction materials is available either (i) from comprehensive in-situ edge) is attained when information on the testing; or (ii) from original test reports, complemented by limited in-situ testing; or (iii) from original design specifications, complemented by extended in-situ testing. In the case of masonry structures, in addition to what is required for KLM2, direct testing of material properties in the critical areas should be performed, in order to update the reference values h to what is required for KLM1, the knowledge of predefined masonry types; material properties should then be defined by using results of tests for updating the reference values for the masonry types. In the case of timber timber buildings and timber membe structures, in addition to what is required for KLM2, (semi) non-destructive s, when original design documents are testing, e.g. by resistance drilling, and/or density measurements on small avoided, but, in addition to what is samples in order to define the material properties in the critical zones should ould be enhanced by non-destructive be performed (see **Table 10.1**).

aterials is available either (i) from extended inations complemented by limited in-situ testing. hal design documents are not available, direct structive testing, as specified in Table 5.3 for lassification of masonry types in the structure. In

General rules

 Table 10.1 gives an overview of selected methods for assessing the condition of timber structural members through non-destructive testing (NDT) and semidestructive testing (SDT), based on the two recommendations edited by the RILEM Technical Committee AST 215 ''In-situ assessment of structural timber''

Method		Determine species	Measure MC	Locate deterioration	Quantify deterioration	Assess strength	Determine stiffness	Identify hidden details	Knowledge level	Condition assessment
Visual inspection	NDT			Limited					KLM1 - KLM2 - KLM3	\checkmark
Remote visual inspection	NDT			Limited	Limited			Yes	KLM3	✓ (**)
Species identification	NDT	Yes							KLM1 - KLM2 - KLM3	\checkmark
Moisture measurements	NS		Yes						KLM1 - KLM2 - KLM3	\checkmark
Digital radioscopy	NDT			Yes	Limited			Yes	KLM3 (*)	
Ground penetrating radar	NDT		Limited	Limited				Limited	KLM3 (*)	
Infrared thermography	NDT		Limited	Limited				Limited	KLM3 (*)	
Stress waves	NDT			Limited	Limited	Limited	Estimate		KLM2 (*) - KLM3 (*)	✓ (**)
Ultrasound methods	NDT			Limited	Limited	Limited	Estimate	Limited	KLM2 (*) - KLM3 (*)	✓ (**)
Resistance drilling	NDT			Yes	Yes	Limited		Limited	KLM2 (*) - KLM3	✓ (**)
Core drilling	SDT			Yes		Estimate	Estimate		KLM2 (*) - KLM3 (*)	
Tension micro-specimens	SDT					Estimate	Estimate		KLM2 (*) - KLM3 (*)	
Glueline test	SDT		Limited	Limited		Limited			KLM2 (*) - KLM3	✓ (**)
Screw withdrawal	SDT			Limited		Limited			KLM2 (*) - KLM3 (*)	
Needle penetration	NDT			Limited		Limited			KLM2 (*) - KLM3 (*)	✓ (**)
Pin pushing	SDT			Yes	Limited	Estimate			KLM2 (*) - KLM3 (*)	✓ (**)
Surface hardness	SDT			Limited		Limited			KLM2 (*) - KLM3 (*)	
(*) Not mandatory										
(**) If relevant										
NDT: Non-Destructive Techniq SDT: Semi-Destructive Techniq										
NS: NDT or SDT, depending on		sting methodolo	ay used							

Table 10.1 — NDT and SDT methods to assess Knowledge Level and Condition assessment of structural timber

General rules

Table 10.1 gives an overview of selected methods for assessing destructive testing (SDT), based on the two recommendations e

Table 10.1 — NDT and SDT methods to as

		ישא -		lemous io	US CONTRACTOR	
	Method		Determine species	Measure MC	Lo de	CAPRIATA C3
	Visual inspection	NDT			Lir	The de
	Remote visual inspection	NDT			Lir	Las Altras
	Species identification	NDT	Yes		8- 14 A	ATTE ALS
<	Moisture measurements	NS		Yes		
	Digital radioscopy	NDT			Ύε	
	Ground penetrating radar	NDT		Limited	Lir	
	Infrared thermography	NDT		Limited	Lir	
	Stress waves	NDT			Lir	1
	Ultrasound methods	NDT			Lir	10.
	Resistance drilling	NDT			Ye	In The
	Core drilling	SDT			Υe	66
	Tension micro-specimens	SDT				
	Glueline test	SDT		Limited	Lir	
	Screw withdrawal	SDT			Lir	
	Needle penetration	NDT			Limited	
	Pin pushing	SDT			Yes	Limited
	Surface hardness	SDT			Limited	
	(*) Not mandatory (**) If relevant					
	NDT: Non-Destructive Techniqu					
	SDT: Semi-Destructive Techniq					
	NS: NDT or SDT, depending on	ine tes	ling memodolog	gy used		

mbers through non-destructive testing (NDT) and seminittee AST 215 ''In-situ assessment of structural timber''

n assessment of structural timber

ine	Identify hidden details	Knowledge level	Condition assessment
		KLM1 - KLM2 - KLM3	\checkmark
	Yes	KLM3	✓ (**)
		KLM1 - KLM2 - KLM3	✓
		KLM1 - KLM2 - KLM3	✓
	Yes	KLM3 (*)	
	Limited	KLM3 (*)	
	Limited	KLM3 (*)	
Э		KLM2 (*) - KLM3 (*)	✓ (**)
Э	Limited	KLM2 (*) - KLM3 (*)	✓ (**)
	Limited	KLM2 (*) - KLM3	✓ (**)
e		KLM2 (*) - KLM3 (*)	
e		KLM2 (*) - KLM3 (*)	
		KLM2 (*) - KLM3	✓ (**)
		KLM2 (*) - KLM3 (*)	
		KLM2 (*) - KLM3 (*)	✓ (**)
		KLM2 (*) - KLM3 (*)	✓ (**)
		KLM2 (*) - KLM3 (*)	

Limited Estimate Limited

₩ European EAEE Commission

CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUIL

General rules

Table 10.1 gives an overview of selected destructive testing (SDT), based on the ty

Table 10.1 — NDT

Method

			1
	Visual inspection	NDT	~
	Remote visual inspection	NDT	
	Species identification	NDT	12
	Moisture measurements	NS	Phil
	Digital radioscopy	NDT	
	Ground penetrating radar	NDT	il.
	Infrared thermography	NDT	
	Stress waves	NDT	
	Ultrasound methods	NDT	
<	Resistance drilling	NDT	
	Core drilling	SDT	
	Tension micro-specimens	SDT	
	Glueline test	SDT	
	Screw withdrawal	SDT	
	Needle penetration	NDT	
	Pin pushing	SDT	
	Surface hardness	SDT	
	(*) Not mandatory (**) If relevant		
	NDT: Non-Destructive Techniqu	Je	

SDT: Semi-Destructive Technique

NS: NDT or SDT, depending on the testing methodology used

Limited Estimate Limited Limited Limited Limited Limited Estimate Yes Yes Limited Estimate Yes Estimate Estimate Estimate Limited Limited Limited Limited Limited Limited Limited Yes Limited Estimate Limited Limited

ugh non-destructive testing (NDT) and semi-5 "In-situ assessment of structural timber"

ht of structural timber

		Knowledge level	Condition assessment
		KLM1 - KLM2 - KLM3	✓
11		KLM3	✓ (**)
		KLM1 - KLM2 - KLM3	✓
/		KLM1 - KLM2 - KLM3	✓
	Yes	KLM3 (*)	
	Limited	KLM3 (*)	
	Limited	KLM3 (*)	
		KLM2 (*) - KLM3 (*)	✓ (**)
	Limited	KLM2 (*) - KLM3 (*)	✓ (**)
	Limited	KLM2 (*) - KLM3	✓ (**)
		KLM2 (*) - KLM3 (*)	
		KLM2 (*) - KLM3 (*)	
		KLM2 (*) - KLM3	✓ (**)
		KLM2 (*) - KLM3 (*)	
		KLM2 (*) - KLM3 (*)	✓ (**)
		KLM2 (*) - KLM3 (*)	✓ (**)
		KLM2 (*) - KLM3 (*)	

General rules

Table 10.1 gives an overview of selected methods for assessing the condition of timber structural members through non-destructive testing (NDT) and semidestructive testing (SDT), based on the two recommendations edited by the **RILEM Technical Committee AST 215** ''In-situ assessment of structural timber''

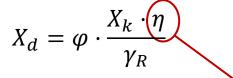

Method		1		2		As: str 3	4		Knowledge level	Condition assessmen
Visual inspection	NDT	de 1 1 mail					- 1. Tag		KLM1 - KLM2 - KLM3	√
Remote visual inspection	NDT	1. A Car		A				and the second	KLM3	✓ (**)
Species identification	NDT	at the seal	YS			Contraction of the second			KLM1 - KLM2 - KLM3	✓
Moisture measurements	NS	The stand when		The set		and the second second			KLM1 - KLM2 - KLM3	✓
Digital radioscopy	NDT	M. Company		1 march	Caller Y			AL MARK	KLM3 (*)	
Ground penetrating radar	NDT		500	A CONTRACTOR	UT CAN	1		in all	KLM3 (*)	
Infrared thermography	NDT			L		FRANK	-	States ?	KLM3 (*)	
Stress waves	NDT	La same	La part	L	The second	Lin			KLM2 (*) - KLM3 (*)	✓ (**)
Ultrasound methods	NDT			Linnea	Linnea	Linnea	Estimate	Limilea	KLM2 (*) - KLM3 (*)	✓ (**)
Resistance drilling	NDT			Yes	Yes	Limited		Limited	KLM2 (*) - KLM3	✓ (**)
Core drilling	SDT			Yes		Estimate	Estimate		KLM2 (*) - KLM3 (*)	
Tension micro-specimens	SDT					Estimate	Estimate		KLM2 (*) - KLM3 (*)	
Glueline test	SDT		Limited	Limited		Limited			KLM2 (*) - KLM3	✓ (**)
Screw withdrawal	SDT			Limited		Limited			KLM2 (*) - KLM3 (*)	
Needle penetration	NDT			Limited		Limited			KLM2 (*) - KLM3 (*)	✓ (**)
Pin pushing	SDT			Yes	Limited	Estimate			KLM2 (*) - KLM3 (*)	✓ (**)
Surface hardness	SDT			Limited		Limited			KLM2 (*) - KLM3 (*)	
(*) Not mandatory										
(**) If relevant	10									
NDT: Non-Destructive Techniq SDT: Semi-Destructive Techniq										
NS: NDT or SDT, depending on		ting methodolo	gy used							

Table 10.1 — NDT and SDT methods to assess Knowledge Level and Condition assessment of structural timber

Knowledge level

General rules

inspections

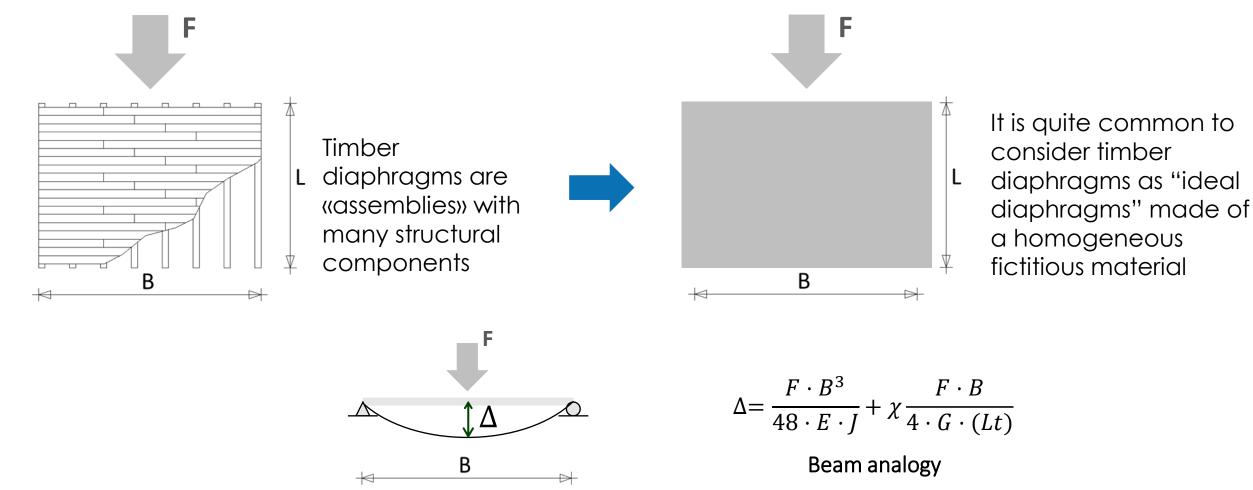
F	1	able 5.3 –	- Values of	$k_{ m mod}$			
			Load-duration of action				
V m	Material	Service class	Permanent	Long- term	Medium- term	Short- term	Instantane ous
$\gamma \cdot \frac{X_k \cdot \eta}{\gamma_R}$	Structural timber (ST), Finger jointed timber (FST), Glued solid timber (GST), Glued-laminate timber (GL), Block glued glulam (BGL), Cross laminated timber (CLT), Solid wood panels (SWP-P, SWP-C), Laminated veneer lumber (LV: Glued laminated veneer lumber (GLVL), Plywoo (PW) ^a , Densified laminated wood (DLW)		0.60 995-1	-1:2	023	0,90	1,10
	Structural Timber (ST), Glued-laminated timber (GL), Laminated veneer lumber (LVL), Ply (PW) ^a		0,55	0,60	0,70	0,80	1,00
Condition assessment fac	Structural timber (ST)	4	0,50	0,55	0,65	0,70	0,90
	Oriented strand board OSB/2	1	0,30	0,45	0,65	0,85	1,10
Refer to D3 class φ-value	(OSB) OSB/3, OSB/4	1	0,40	0,50	0,70	0,90	1,10
		2	0,30	0,40	0,55	0,70	0,90
Refer to the φ-value		1	I				<u> </u>
degradation class immed one obtained on the basis							
Refer to the φ-value degradation class obtained							

Condition assessment factors (ϕ) for timber diaphragms

KLM1 – Minimum knowledge

KLM2 – Average knowledge

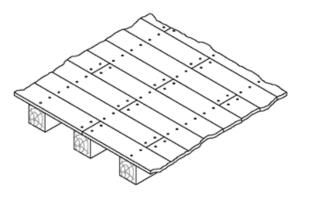
KLM3 - High knowledge

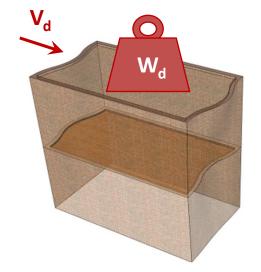

Condition rating	Condition description	As-built	(*) Retrofitted
D1 - Good	Timber free of borer; no signs of past water damage*; little or no nail rust; floorboard-to-joist connection tight, coherent and unable to wobble	1.00	1.00
D2 - Fair	Little or no borer; little or no signs of past water damage*; some nail rust but integrity still fair; floorboard-to-joist connection has some but little movement; small degree of timber wear surrounding nails	0.75	0.90
D3 - Poor	Considerable borer; water damage evident*; nail rust extensive; significant timber degradation surrounding nails; floorboard joist connection appears loose and able to wobble	0.30	0.70

(*): Degradation process is assumed to be no longer active, the biotic cause of degradation is assumed to be no longer present

EAEE European Commission

CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

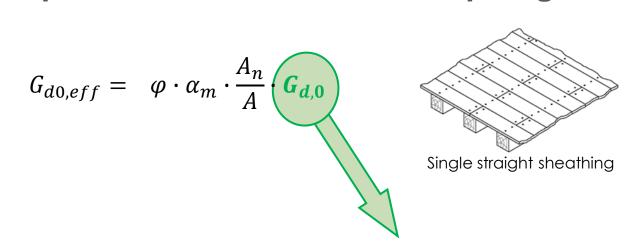

In-plane stiffness of timber diaphragms



In-plane stiffness of timber diaphragms

The diaphragm is considered as a beam subject to **shear deformability only**

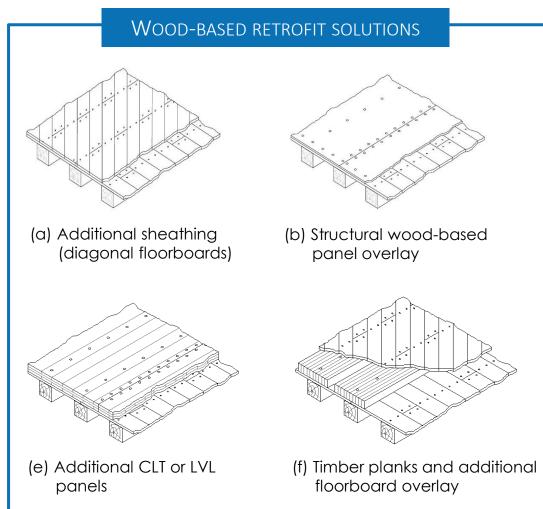
The equivalent shear stiffness (G_d) becomes the key parameter W_d W_d / B W_d / B W_d / B F = 1/4 W_d / B W_d / B W_d / B W_d / B W_d / B



EAEE European Commission

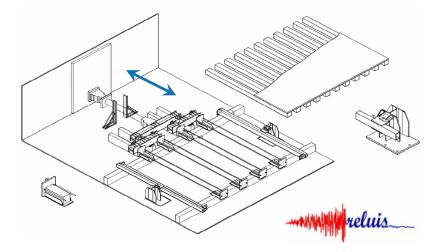
CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

In-plane stiffness of timber diaphragms

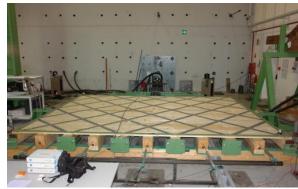

Table 10.7 Reference values for the equivalent shear stiffness, $G_{d,0}$ [kN/m]**

	No	Retrofit					
	retrofit	(a)	(b)	(e)	(f)***		
Single straight sheathing	150	3000	1800	3000	3000		
Single straight sheathing (SQ joists)*	400	3600	2400	4100	3800		

* When the diaphragm is loaded in the direction perpendicular to the joists.


** Given values can be considered as reference values. Background information is provided in Annex D2

*** This retrofit strategy, that is mainy intended for improving diaphragm out-of plane performance, requires squat joists (SQ) in order to be effective.



In-plane stiffness of timber diaphragms

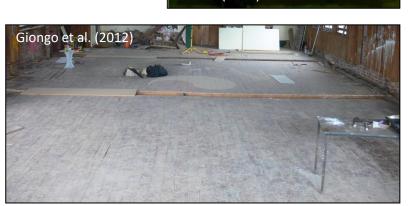
Steel / CFRP strips

Single straight sheathing

RC slab

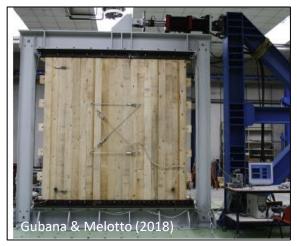
Specimen size: 5 m × 4 m Loading direction: parallel to the joists

Additional diagonal sheathing

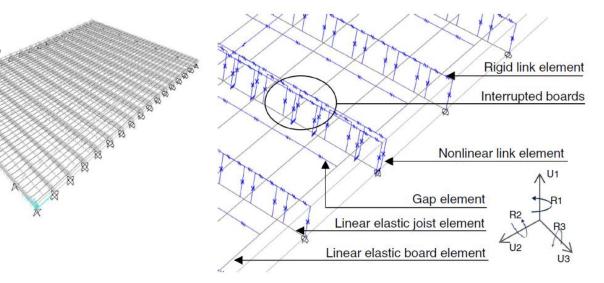

Plywood overlay

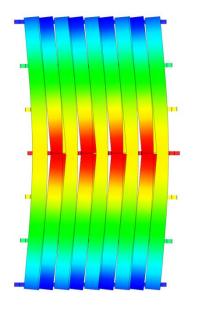
In-plane stiffness of timber diaphragms

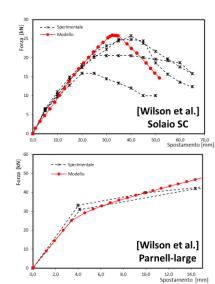
- Different geometries (size, aspect ratio)
- Laboratory-built specimens (onsite testing is quite rare)
- Loading direction (parallel to the joists, perpendicular to the joists)
- Strengthening details (panel thickness, fastener spacing and type)

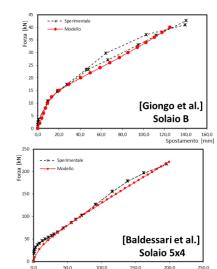


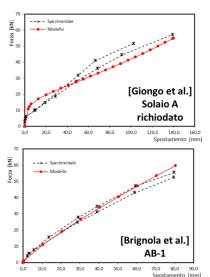
European

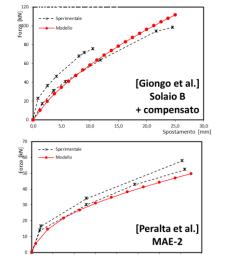





In-plane stiffness of timber diaphragms


It is necessary to find "shared interpretation keys" which allow defining rules and provisions of general validity.





NUMERIC MODELLING

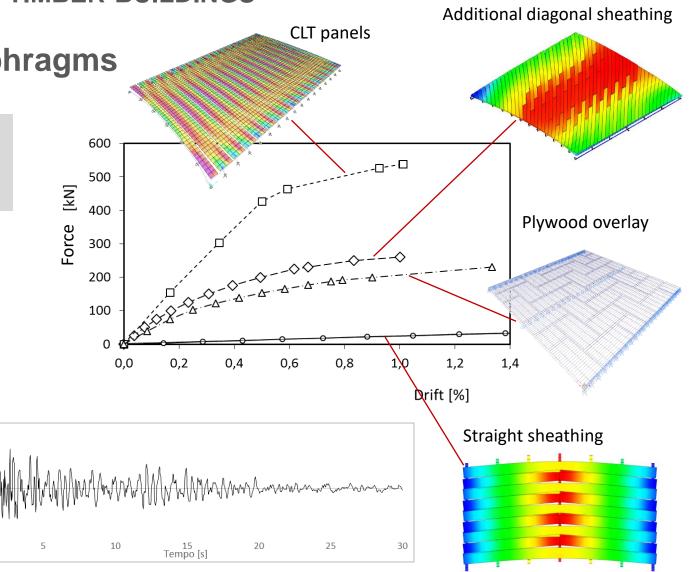
,0 20,0 30,0 40,0 50,0 60,0 70,0 80,0 Spostamento (m

0.4

0.2

-0.2

-0.4

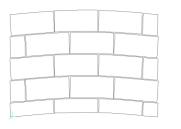

Accelerazione [g]

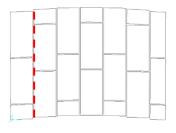
In-plane stiffness of timber diaphragms

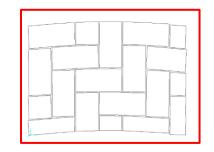
It is necessary to find "shared interpretation keys" which allow defining rules and provisions of general validity.

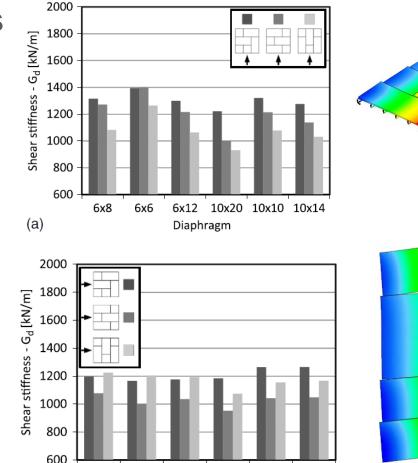
Parametric study focused on:

- ✓ Aspect ratio
- ✓ Scale factor (i.e., size)
- \checkmark Loading direction
- Different modelling approaches
- Non-linear static analyses
- Non-linear dynamic analyses

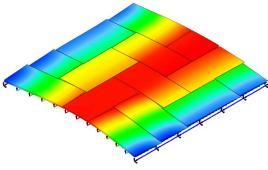


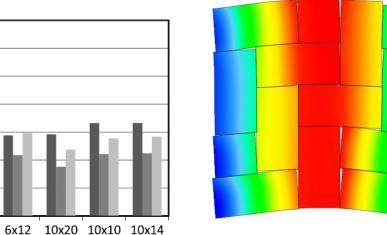

In-plane stiffness of timber diaphragms


It is necessary to find "shared interpretation keys" which allow defining rules and provisions of general validity.


Parametric study focused on:

- ✓ Aspect ratio
- ✓ Scale factor (i.e., size)
- Loading direction \checkmark

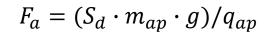



Diaphragm

6x6

6x8

(b)


 \bigcirc

W_{ap}

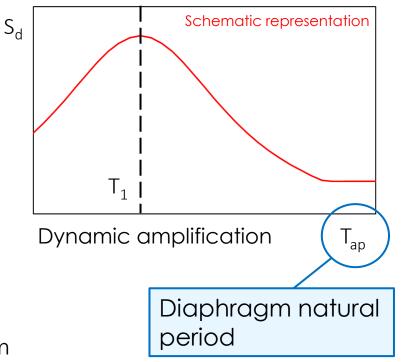
CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

In-plane stiffness of timber diaphragms

The total inertia force acting on the diaphragm

 $S_d = S_{ap}$ is the diaphragm spectral acceleration

 q_{ap} is the behaviour factor


 $m_{ap} \cdot g = W_{ap}$ is the seismic weight of the diaphragm

$$S_{d}(T_{ap}) = \alpha \cdot S \cdot \left(\begin{array}{c} 3 \cdot \left(1 + \left(\frac{Z}{1005} \right) \right) \\ 998 - 1 \cdot 2005 \\ 1 + \left(1 - \frac{T_{ap}}{T_{1}} \right)^{2} \end{array} \right)$$

 $S_d(T_{ap}) = f(T_1, ...) \implies \text{prEN 1998-1-2:2022 (E)}$

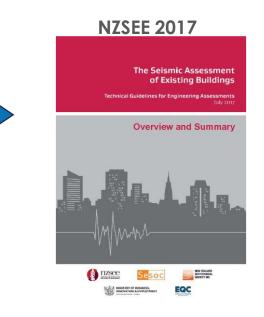
₩

European Commissio

In-plane stiffness of timber diaphragms

How do we calculate the diaphragm oscillating period T_{ap} ?

$$T_{ap} = \alpha_T \cdot \left(\frac{m_{ap}g \cdot L_a}{1000 \cdot G_{d0,eff} \cdot B}\right)^{0.5}$$


RAYLEIGH'S QUOTIENT

 $\alpha_T = 0,63$ Modal shape from parabolic loading, uniform mass distribution $\alpha_T = 0,64$ Modal shape from uniform loading, uniform mass distribution $\alpha_T = 0,70$ One third of total mass lumped at each diaphragm third-point

Depends on the modal shape and on the mass distribution

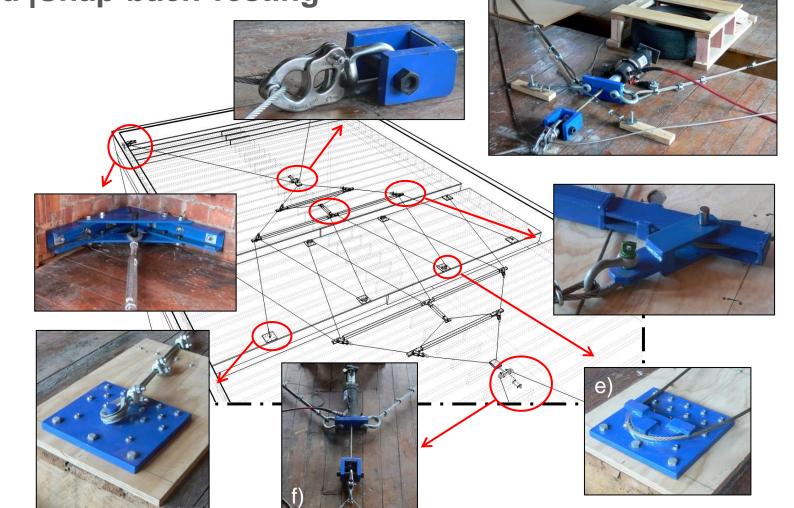
is the period T_{ap} realistic??

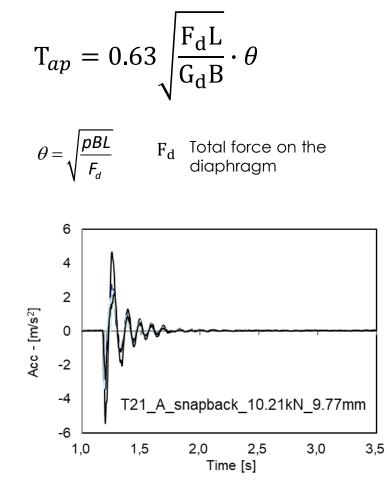
Wilson, A., Quenneville, P., and Ingham, J. (2013). "Natural period and seismic idealization of flexible timber diaphragms." Earthquake Spectra, 29(3), 1003–1019.

EAEE European Commission

CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

Diaphragm oscillating period |Snap-back Testing



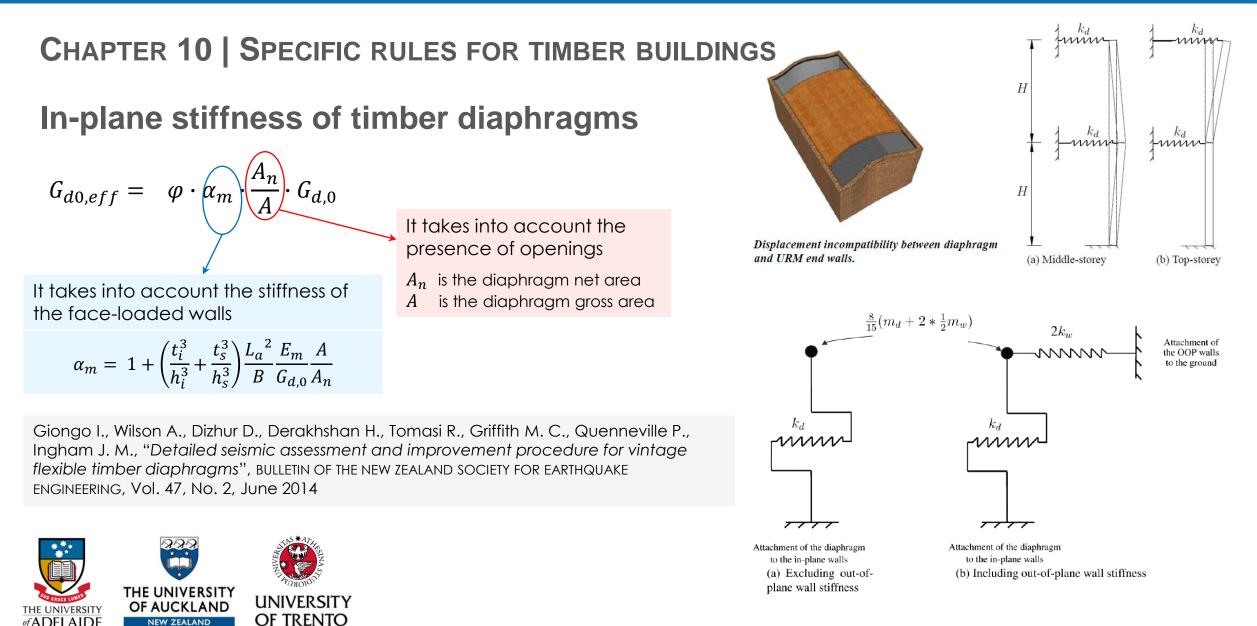

UNIVERSITÀ DEGLI STUDI DI TRENTO Dipartimento di Ingegneria Civile e Ambientale

EAEE European Commission

CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

Diaphragm oscillating period |Snap-back Testing

Expe	RIMENTAL D	ANALYTIC	ALVALUE	
Test n°	T [s]	[s] Disp. [mm]		Err. [%]
T4_A	0.12	10.00	0.12	1%
Т6_А	0.25	61.82	0.22	12%
T7_A	0.25	60.68	0.22	12%
T11_A	0.37	131,12	0.35	6%
T15_A	0.41	152,55	0.38	7%
T19_A	0.34	120,97	0.33	3%
T23_A	0.34	101,55	0.33	1%
T27_B	0.45	157,15	0.49	9%
T29_B	0.45	152,89	0.51	13%
T36_B	0.10	10,09	0.12	19%
T44_C	0.17	35,83	0.16	3%

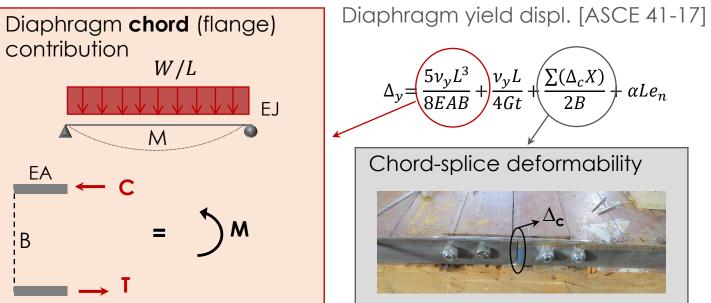


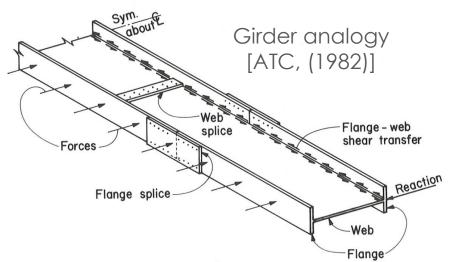
Webinars EC8 **Second Generation of Eurocode 8**

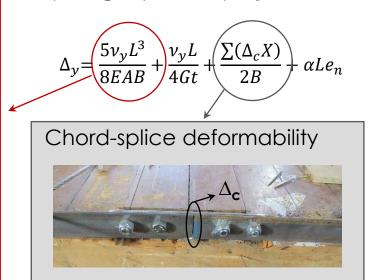
of ADELAIDE

NEW ZEALAND

₩ European FAFF Commission

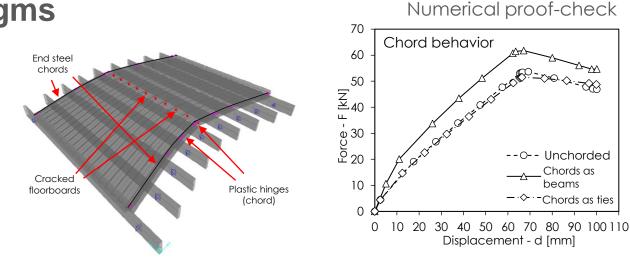



In-plane stiffness of timber diaphragms

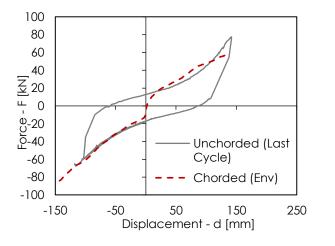

$$G_{d0,eff} = \varphi \cdot \alpha_m \cdot \frac{A_n}{A} \cdot G_{d,0}$$

10.8.2.2. (1) The influence of perimeter chords on the diaphragm in-plane stiffness depends on the type of diaphragms and on the mechanical properties of the chord members and of the chord-to-diaphragm connection.

> NOTE For diaphraams that do not exhibit a clear flexural response, such as single straight sheathed diaphragms, the chord contribution is usually limited, and it is related to the bending stiffness of the chord members. In cases where a more pronounced diaphragm flexural response is expected, the chord axial stiffness is engaged (depending on the stiffness of the chord-todiaphraam connection) and the perimeter chords may act similarly to the flanges of a girder.



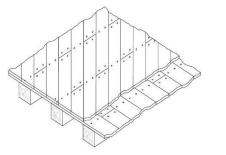
In-plane stiffness of timber diaphragms

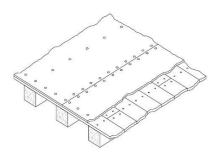

$$G_{d0,eff} = \varphi \cdot \alpha_m \cdot \frac{A_n}{A} \cdot G_{d,0}$$

10.8.2.2. (1) The influence of **perimeter chords** on the diaphragm in-plane stiffness depends on the type of diaphragms and on the mechanical properties of the chord members and of the chord-to-diaphragm connection.

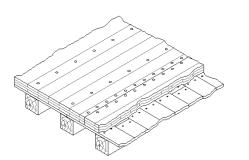
NOTE For diaphragms that do not exhibit a clear flexural response, such as **single straight sheathed diaphragms**, the chord contribution is usually limited, and it is related to the bending stiffness of the chord members. In cases where a more pronounced diaphragm flexural response is expected, the chord axial stiffness is engaged (depending on the stiffness of the chord-todiaphragm connection) and the perimeter chords may act similarly to the flanges of a girder.

Experimental evidence [Rizzi et al. 2020]

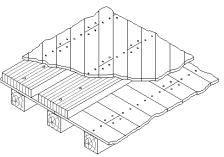




Diaphragm verification | Resistance Check


 $v_{Ed} \leq v_{Rd}$ Unit shear force at the diaphragm support edges

$$v_{Ed} = \frac{F_a}{2B}$$



(a) Additional sheathing (diagonal floorboards)

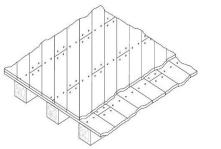
(e) Additional CLT or LVL panels

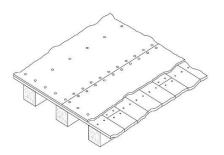
(b) Structural woodbased panel overlav

(f) Timber planks and additional floorboard overlay

Table 10.4 Acceptance criteria in terms of unit shear strength v_R [kN/m]**
--

	No	Type of retrofit					
	retrofit	(a)	(b)	(e)	(f)		
Parallel to joists	3	30	25	40	30		
Perpendicular to joists5*45254540							
* In case of SQ joists, diaphragm shear strength in the direction perpendicular to the joists, can be significantly higher than the v_R value reported in the table.							
** Given values can be considered as mean reference values.							

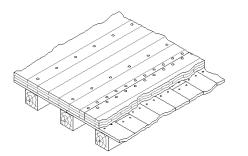

Diaphragm verification | Deformation Check

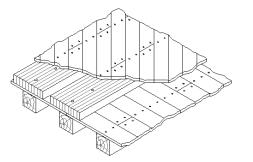

$$d_{r} = \frac{2 \cdot A_{d}}{L_{a}} \cdot 100 \le d_{r,max}$$

Displacement
demand
$$= 1,25 \cdot 10^{-3} \cdot \mu_{d} \cdot S_{d} (T_{ap}) \cdot \frac{L_{a} \cdot m_{ap}}{B \cdot G_{d,eff}}$$

 Δ_d

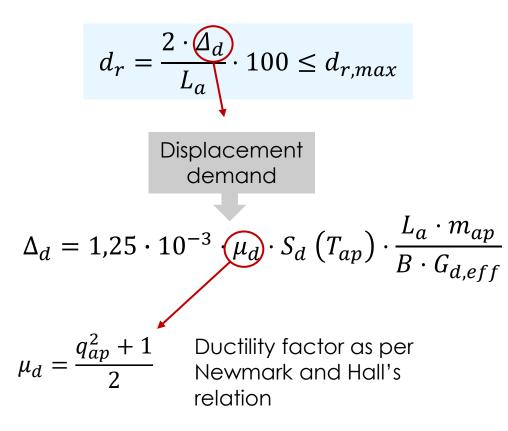
Table 10.4 Acceptance criteria in terms of drift ratios $d_{r,max}$ [%]

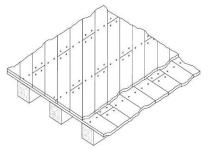

	No retrofit		Type o	f retrofit	-
	Noretront	(a)	(b)	(e)	(f)
Near Collapse (NC)	6.0%	2.1%	1.6%	1.5%	2.1%
Significant Damage (SD)	4.0%	1.5%	1.2%	1.1%	1.5%
Damage Limitation (DL)	2.5%	0.8%	0.7%	0.6%	0.8%

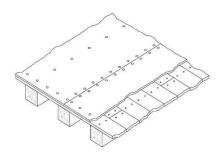


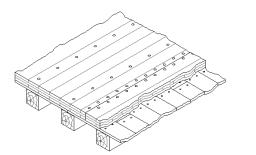
(a) Additional sheathing (diagonal floorboards)

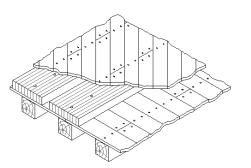
(b) Structural woodbased panel overlay


(e) Additional CLT or LVL panels



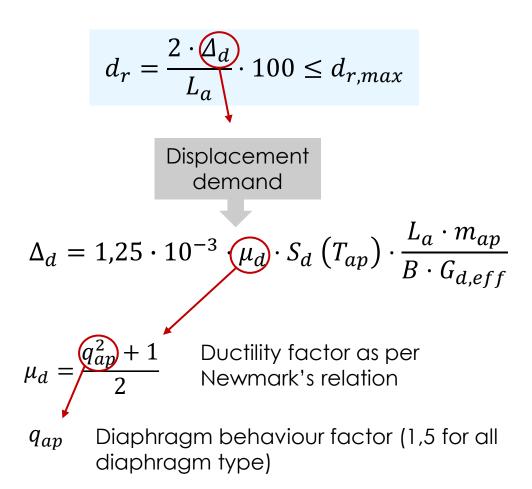

(f) Timber planks and additional floorboard overlay


Diaphragm verification | Deformation Check



(a) Additional sheathing (diagonal floorboards) (b) Structural woodbased panel overlay

(e) Additional CLT or LVL panels



(f) Timber planks and additional floorboard overlay

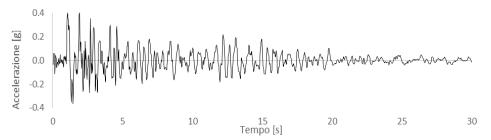
EAEE European Commission

CHAPTER 10 | SPECIFIC RULES FOR TIMBER BUILDINGS

Diaphragm verification | Deformation Check

Nonlinear Static/Dynamic Study (q_{ab})

Diaphragm types

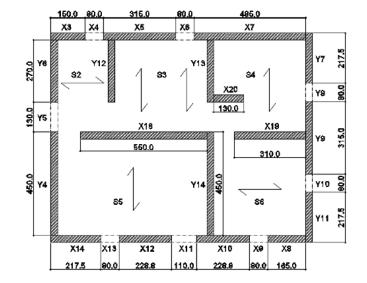

.

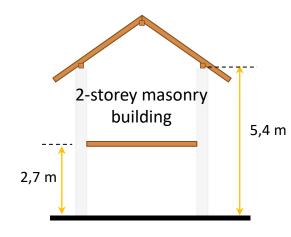
Geometries

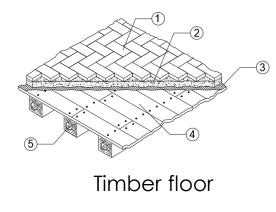
Single straight sheathing	ID	L	В
Plywood overlay over straight		[m]	[m]
sheathing	6x8	6	8
Diagonal sheathing over straight	6x6	6	6
sheathing	6x12	6	12
CLT panels over straight	4x4	4	4
sheathing	4x8	4	8

Ground motions

- Two sets of natural accelerograms (PGA=0.2g & PGA=0.4g)
- Each set comprised 7 accelerograms (total of 14)
- Two loading directions (slender and squat joist scenarios)

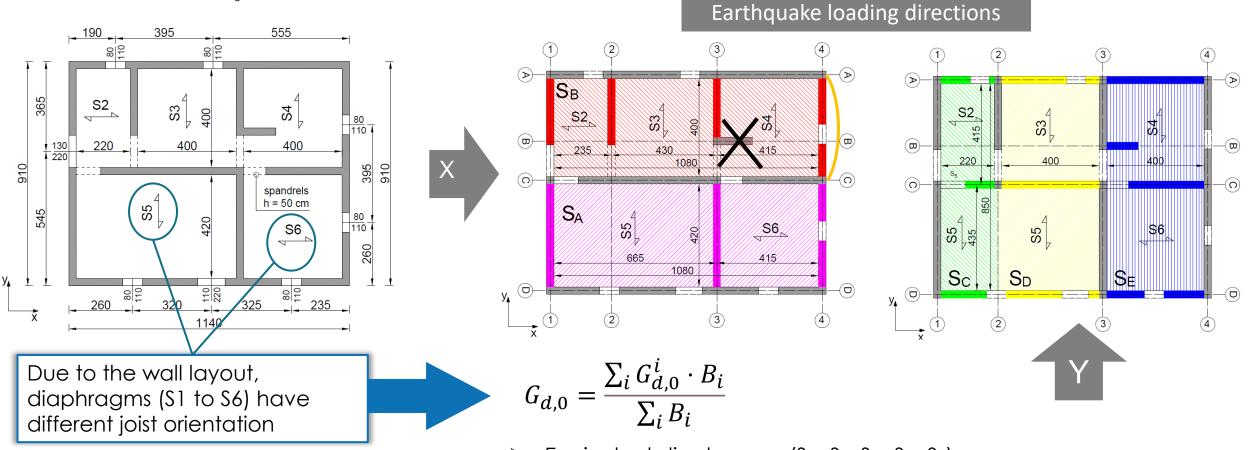





-(4)

Worked example

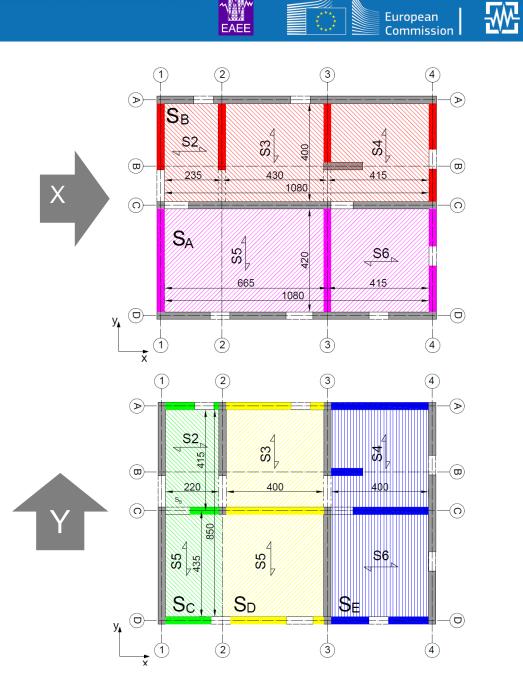
PROTEZIONE CIVILE


1) Terracotta tiles10) Roof tile2) Screed11) Timber I3) Waterproof breathable12) Timber Imembrane13) Wood f4) Wood decking14) Vapour5) Timber joist

10) Roof tiles
11) Timber lath for tile support
12) Timber lath for ventilation
13) Wood fibre insulation
14) Vapour barrier

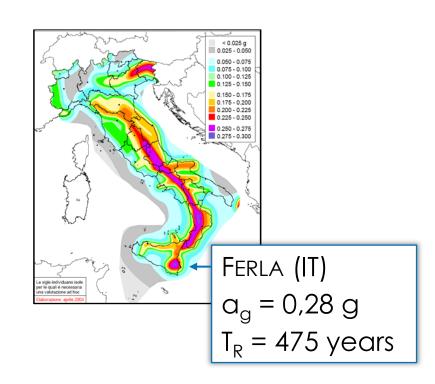
Timber roof

Giongo I., Rizzi E., Piazza M., "Seismic assessment of timber diaphragms according to the new draft of EN1998-3",6th International Conference on Structural Health Assessment of Timber Structures, 7-9 September 2022, Prague

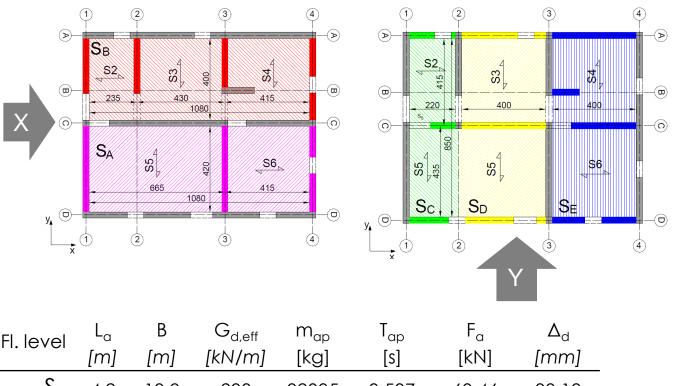


- > Equivalent diaphragms $(S_A, S_B, S_C, S_D, S_E)$
- Deformation compatibility assumption
- Walls parallel to the seismic force provide full restraint to inplane deformation (if > 25% equivalent diaphragm length)

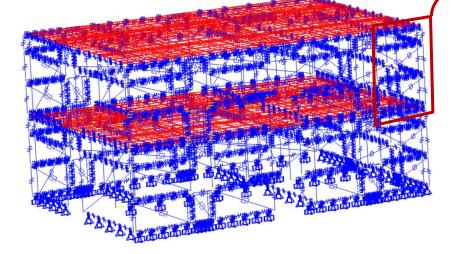
EQUIVALENT FLOOR-DIAPHRAGMS


		Floor bay	Orientatio n*	G _{d,0} - floor bay [kN/m]	B [m]	G _{d,0} – equiv. diaph. [kN/m]
	SA	S ₅ S ₆	90 0	400 150	6.65 4.15	304
X		S2	0	150	2.35	
	SB	S ₃	90	400	4.30	346
	- D	S ₄	90	400	4.15	
	2	S ₂	90	400	4.15	272
_	JC	\$ ₅	0	150	4.35	
	C	S ₃	0	150	4.15	150
I	Э _D	S_5	0	150	4.35	150
	C	S ₄	0	150	4.15	278
	၁ _E	S ₆	90	400	4.35	270

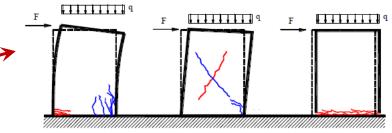
* Joist orientation: 0 – parallel to the seismic load; 90 – perpendicular to the seismic load

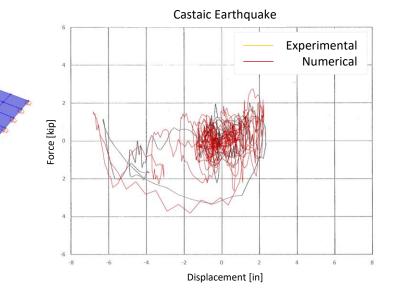

European

- > Health condition: "D2 Fair" ($\phi = 0,75$)
- Mass of perpendicular walls added to the tributary mass of the equiv. diaphragms

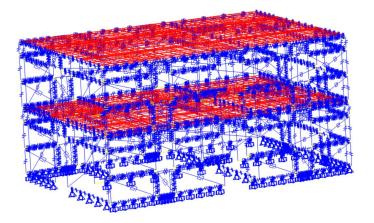

→ $T_1 = 0.177 s$

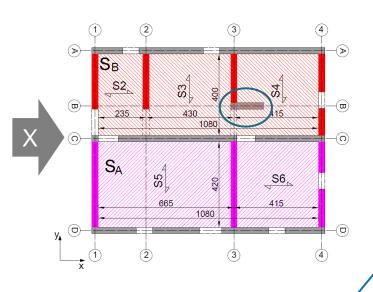
FL I	evel	La	В	G _{d,eff}	m _{ap}	T _{ap}	Fa	Δ_{d}
		[m]	[m]	[kN/m]	[kg]	[S]	[kN]	[mm]
	SA	4.2	10.8	233	32005	0.507	60.46	30.19
	SB	4.0	10.8	264	30526	0.454	57.67	24.22
1	S_{C}	2.2	8.5	206	13339	0.284	70.53	26.52
	S_{D}	4.0	8.5	118	26693	0.715	50.43	60.05
	S _F	4.0	8.5	214	29164	0.555	55.10	36.20

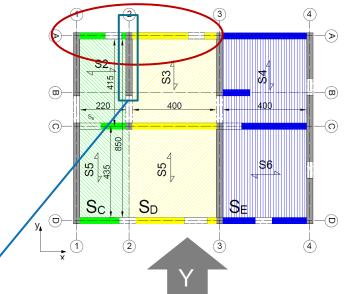


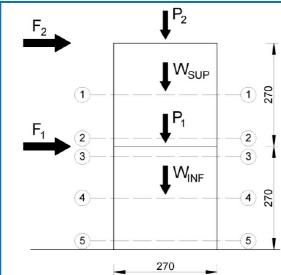


- Non-linear Finite Element modelling
- Software SAP2000
- Diaphragms modelled using orthotropic shell elements calibrated on NLTA
- Comparison was made at the performance point


Set of non-linear link elements for reproducing masonry failure modes

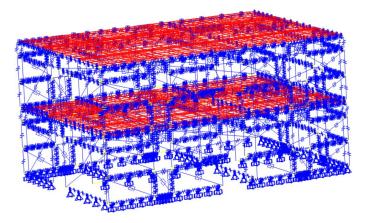



COMPARISON WITH FE MODEL

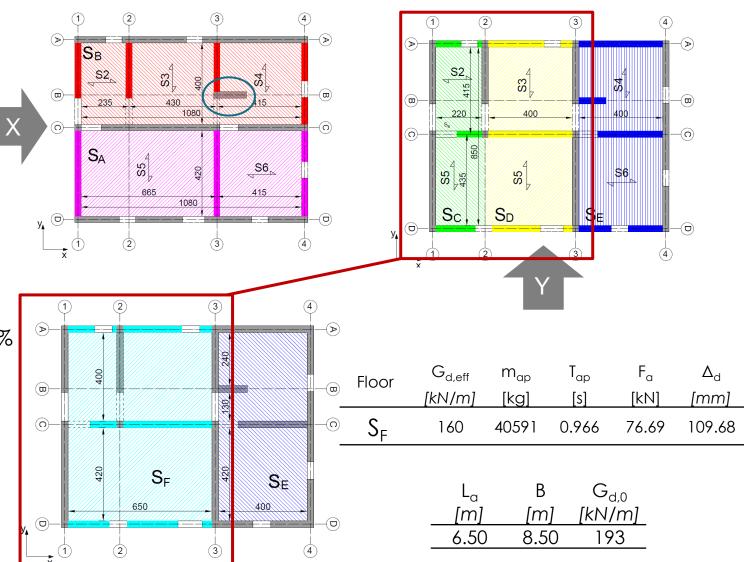


- ➢ Deformation difference on average ≈ < 35%</p>
- General tendency to overestimate the FE deformation (e.g. for S_B)
- $\succ~$ Large difference for $\rm S_{C}$ and $\rm S_{D}$

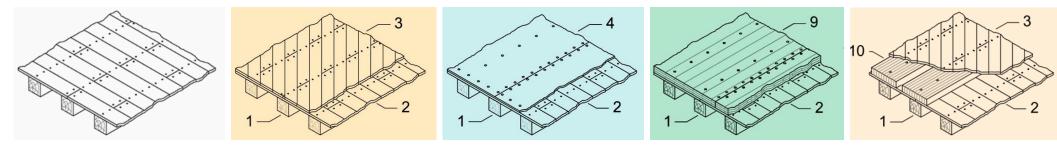
Large underestimation!



e ₅₋₅ =		434.19 120.79		= 3.60 m
	Ν	V	Μ	


Wall section	[kN]	[kN]	[kNm]
1-1	34,3	50,1	67,7
2-2	58,6	50,1	135,4
3-3	72,2	110,6	135,4
4-4	96,5	110,6	284,7
5-5	120,8	110,6	434,0

COMPARISON WITH FE MODEL



- ➢ Deformation difference on average ≈ < 35%</p>
- General tendency to overestimate the FE deformation (e.g. for S_B)
- \blacktriangleright Large difference for S_C and S_D
- S_F introduced to account for the failure of wall line 2 (smaller difference)

SAFETY CHECKS

DEFORMATION LIMITATION CHECKS

Retrofit type As-B (a) (f) (b) (e) dr/dr_{cap} dr/dr_{cap} dr/dr_{cap} Floor ID dr/dr_{cap} dr/dr_{cap} S_A 0.27 0.36 0.28 0.57 0.34 0.24 S_B 0.30 0.25 0.52 0.30 S_E 0.33 0.45 0.68 0.42 0.34 0.46 S 0.84 0.46 0.69 0.62

FORCE LIMITATION CHECKS

		A o D		Retrofit type					
		As-B	(a)	(b)	(e)	(f)			
Direction	Floor ID	$v_{Ed}^{\prime}/v_{Rd}^{\prime}$	$v_{Ed}^{}/v_{Rd}^{}$	$v_{Ed}^{}/v_{Rd}^{}$	v_{Ed}/v_{Rd}	v_{Ed}/v_{Rd}			
	S2	0.52	0.32	0.37	0.21	0.30			
	S3	0.82	0.25	0.50	0.25	0.29			
Χ	S4	0.82	0.25	0.50	0.25	0.29			
	S5	0.98	0.28	0.55	0.29	0.32			
	S6	0.61	0.35	0.41	0.24	0.34			
	S2	1.50	0.42	0.56	0.43	0.48			
	S3	2.49	0.63	0.56	0.49	0.64			
Υ	S4	0.78	0.42	0.49	0.29	0.41			
	S5	1.56	0.59	0.50	0.43	0.58			
	S6	1.24	0.34	0.65	0.35	0.39			

FURTHER REFERENCES & BACKGROUND DOCUMENTS

- 1. ASCE (American Society of Civil Engineers) (2017). "Seismic Evaluation and Retrofit of Existing Buildings". Reston, VA: ASCE. United States of America.
- 2. Branco M., Piazza M., Cruz P., Structural analysis of two King-post timber trusses: Non-destructive evaluation and load-carrying tests, Construction and Building Materials, Volume 24, Issue 3, March 2010, pp. 371-383.
- 3. CEN (European Committee for Standardization) (2022). "Eurocode 8 Design of structures for earthquake resistance Part 1-1: General rules and seismic actions". prEN1998-1-1:2022(E). Brussels, BE.
- 4. CEN (European Committee for Standardization) (2022). "Eurocode 8 Design of structures for earthquake resistance Part 1-2: Buildings". prEN1998-1-2:2022(E). Brussels, BE.
- 5. CEN (European Committee for Standardization) (2022). "Eurocode 8 Design of structures for earthquake resistance Part 1-3: Assessment and retrofitting of buildings and bridges". prEN1998-1-3:2022(E). Brussels, BE.
- 6. CEN (European Committee for Standardization) (2023). "Eurocode 5 Design of timber structures Part 1-1: General rules and rules for buildings". prEN1995-1-1:2023. Brussels, BE.
- 7. Giongo, I., Dizhur, D., Tomasi, R., Ingham, J. M., 2013. "In plane assessment of existing timber diaphragms in URM buildings via quasi static and dynamic in situ tests", Advanced Materials Research, vol. 778, pp. 495-502.
- 8. Giongo I., Rizzi E., Ingham J., Dizhur D., 2018, "Numerical modelling strategies for the in-plane behavior of straight sheathed timber diaphragms", J. Struct. Eng., vol. 144, No.10.
- 9. Mariapaola Riggio, Ronald W. Anthony, Francesco Augelli, Bohumil Kasal, Thomas Lechner, Wayne Muller, Thomas Tannert, "In situ assessment of structural timber using non-destructive techniques", Materials and Structures, 2014, vol. 47, pp. 749-766.
- 10. NZSEE (New Zealand Society for Earthquake Engineering) (2017). "Assessment and improvement of the structural performance of buildings in earthquakes". NZSEE 2017. Wellington, New Zealand.
- 11. Parisi M.A., Piazza M., Seismic strengthening and seismic improvement of timber structures, Construction and Building Materials 97 (2015) 55-66.
- 12. Rizzi E., Capovilla M., Giongo I., Piazza M., 2017, "Numerical study on the in-plane behaviour of existing timber diaphragms strengthened with diagonal sheathing". SHATIS'17, Instanbul, Turkey.

FURTHER REFERENCES & BACKGROUND DOCUMENTS

- 12. Rizzi E., Capovilla M., Piazza M., Giongo I. (2019). "In-plane behaviour of timber diaphragms retrofitted with CLT panels". RILEM Bookseries. DOI:10.1007/978-3-319-99441-3_173.
- 13. Rizzi E., Giongo I., Ingham J., Dizhur D. (2020). "Testing and Modeling In-Plane Behavior of Retrofitted Timber Diaphragms", J. Struct. Eng., v. 2020, vol. 146, n. Issue 2 (2020).
- 14. Thomas Tannert, Ron Anthony, Bohumil Kasal, Michal Kloiber, Maurizio Piazza, Mariapaola Riggio, Frank Rinn, Robert Widmann, Nobuyoshi Yamaguchi, "In situ assessment of structural timber using semi-destructive techniques", Materials and Structures, 2014, vol. 47, pp. 767-785.
- 15. Ulrike Dackermann, Keith Crews, Bohumil Kasal, Jianchun Li, Mariapaola Riggio, Frank Rinn, Thomas Tannert, "In situ assessment of structural timber using stresswave measurements", Materials and Structures, 2014, vol. 47, pp. 787-803.
- 16. Wilson, A., Quenneville, P., and Ingham, J. (2013). "Natural period and seismic idealization of flexible timber diaphragms." Earthquake Spectra, 29(3), 1003–1019.

ACKNOWLEDGEMENTS

- Subgroup on existing timber structures within CEN TC-250 SC8 Working Group 3
- André Jorissen, former Leader of the Subgroup
- CEN TC-250 SC8 Working Group 3
- Philippe Bisch, Chairman of TC250/SC8
- Andreas Kappos, CEN TC-250 SC8 MC member

THANK YOU FOR YOUR ATTENTION!